Assessing Student Teachers’ Ability in Posing Mathematical Reasoning Problems
Abstract
Assessing student teachers’ ability to pose mathematical reasoning problems within their experiences in teacher education is essential due to their increasing challenges in preparing for 21st-century learning. This study investigates the quality of mathematical reasoning problems posed by student teachers. Thirty-four student teachers at a public university in Surabaya, Indonesia, who attended an assessment lecture posed mathematical problems, where four aspects (suitability of indicators which refers to cognitive behaviour expected from the problems posed, the plausibility of the solution of the problems poses, the correctness of the solution, and language readability) were used to assess the problems posed. The results indicate that more than 70% of the studentteacher participants were successful in posing reasoning problems (either objective or subjective questions) indicated by those which are in accordance with the established criteria. However, most of the posed problems are categorised as ‘analyse’ problems instead of ‘evaluate’ or ‘create’ problems.
Downloads
References
Akhter, N., Akhtar, M., & Abaidullah, M. (2015). The perceptions of high school mathematics problem-solving teaching methods in mathematics education. Bulletin of Education and Research, 37(1), 55–77. https://files.eric.ed.gov/fulltext/EJ1210366.pdf
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Allyn & Bacon.
Anggraena, Y., Ginanto, D., Felicia, N., Andiarti, A., Herutami, N., Alhapip, L., ... & Mahardika, R. L. (2022). Panduan Pembelajaran dan Asesmen Pendidikan Anak Usia Dini, Pendidikan Dasar, dan Menengah [Learning Guide and Assessment for Early Childhood, Elementary, and Secondary Education]. Badan Standar, Kurikulum, Dan Asesmen Pendidikan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia.
Bernard, M., & Chotimah, S. (2014). Improve student mathematical reasoning ability with an open-ended approach using VBA for PowerPoint. Proceedings of the International Conference on Science and Applied Science (ICSAS) 2018Indonesia. AIP Conference Proceedings 2014, 020013. https://doi.org/10.1063/1.5054417
Bjuland, R. (2007). Adult students’ reasoning in geometry: Teaching mathematics through collaborative problem-solving in teacher education. The Mathematics Enthusiast, 4(1), 1–31. https://scholarworks.umt.edu/tme/vol4/iss1/1/
Boesen, J., Lithner, J., & Palm, T. (2010). The relation between types of assessment tasks and the mathematical reasoning students use. Educational Studies in Mathematics, 75(1), 89–105.
Cai, J., & Hwang, S. (2021). Teachers as redesigners of curriculum to teach mathematics through problem posing: Conceptualization and initial findings of a problem‑posing project. ZDM – Mathematics Education, 53(6), 1403–1416. https://doi.org/10.1007/s11858-021-01252-3
Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing (pp. 3–34). Springer.
Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2012). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83(1), 57–69. https://doi.org/10.1007/s10649-012-9429-3
Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics Teacher Education, 16(1), 1–6.
Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers’ practices. Educational Studies in Mathematics, 52(3), 243–270. https://doi.org/10.1023/A:1024364304664
Crespo, S., & Sinclair, N. (2008). What makes a problem mathematically interesting? Inviting prospective teachers to pose better problems. Journal of Mathematics Teacher Education, 11(5), 395–415. https://doi.org/10.1007/s10857-008-9081-0
Grundmeier, T. A. (2015). Developing the problem-posing abilities of prospective elementary and middle school teachers. In Mathematical problem posing (pp. 411–431). Springer.
Harvey, L., & Green, D. (1993). Defining quality. Assessment & Evaluation in Higher Education, 18(1), 9–34. https://doi.org/10.1080/0260293930180102
Hodnik, T., & Kolar, V. M. (2022). Problem Solving and Problem Posing: From Conceptualisation to Implementation in the Mathematics Classroom. Center for Educational Policy Studies Journal, 12(1), 7–12.
Jäder, J., Sidenvall, J., & Sumpter, L. (2017). Students’ mathematical reasoning and beliefs in nonroutine task solving. International Journal of Science and Mathematics Education, 15(4), 759–776. https://doi.org/10.1007/s10763-016-9712-3
Kim, H., Sefcik, J. S., & Bradway, C. (2017). Characteristics of qualitative descriptive studies: A systematic review. Research in Nursing & Health, 40(1), 23–42. https://doi.org/10.1002/nur.21768
Kohar, A. W., Wardani, A. K., & Fachrudin, A. D. (2019). Profiling context-based mathematics tasks developed by novice PISA-like task designers. Journal of Physics: Conference Series, 1200, 012014. https://doi.org/10.1088/1742-6596/1200/1/012014
Kosyvas, G. (2016). Levels of arithmetic reasoning in solving an open-ended problem. International Journal of Mathematical Education in Science and Technology, 47(3), 356–372. https://doi.org/10.1080/0020739X.2015.1072880
Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice, 41(4), 212–218.
Lavy, I. & Shriki, A. (2007). Problem posing as a means for developing mathematical knowledge of prospective teachers. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st conference of the International Group for the Psychology of Mathematics Education, South Korea, 3, 129–136. PME. https://www.emis.de//proceedings/PME31/3/129.pdf
Leavy, A., & Hourigan, M. (2019). Posing mathematically worthwhile problems: Developing the problem-posing skills of prospective teachers. Journal of Mathematics Teacher Education, 23(4), 341–361. https://doi.org/10.1007/s10857-018-09425-w
Lee, S. Y. (2021). Research status of mathematical problem posing in mathematics education journals. International Journal of Science and Mathematics Education, 19(8), 1677–1693.
Lee, Y., Capraro, R. M., & Capraro, M. M. (2018). Mathematics teachers’ subject matter knowledge and pedagogical content knowledge in problem posing. International Electronic Journal of Mathematics Education, 13(2), 75–90. https://doi.org/10.12973/iejme/2698
Li, X., Song, N., Hwang, S., & Cai, J. (2020). Learning to teach mathematics through problem posing: Teachers’ beliefs and performance on problem posing. Educational Studies in Mathematics, 105(3), 325–347.
Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. Journal for Research in Mathematics Education, 30(5), 520–540. https://doi.org/10.2307/749772
Marshall, J. C., & Horton, R. M. (2011). The relationship of teacher-facilitated, inquiry-based instruction to student higher-order thinking. School Science and Mathematics, 111(3), 93–101. https://doi.org/10.1111/j.1949-8594.2010.00066.x
Masriyah, M., Kurniasari, I., & Palupi, E. L. W. (2018, September). Characteristics of pre-service teachers’ performance in problem posing. In Journal of Physics: Conference Series (Vol. 1088, No. 1, p. 012115). IOP Publishing.
McMillan, J. H. (2001). Secondary teachers’ classroom assessment and grading practices. Educational Measurement: Issues and Practice, 20(1), 20–32. https://doi.org/10.1111/j.1745-3992.2001.tb00055.x
Ministry of Education of Republic of Indonesia (MoE). (2016). Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 24 Tahun 2016. MoE. https://peraturanpedia.id/peraturan-menteri-pendidikan-dan-kebudayaan-nomor-24-tahun-2016/
Ministry of Education of Republic of Indonesia (MoE). (2016). Permendikbud No 24 tahun 2016. MoE. https://bsnp-indonesia.org/2016/08/peraturan-menteri-pendidikan-dan-kebudayaan-nomor-24-tahun-2016/
Ministry of Education of Republic of Indonesia (MoE). (2021). AKM dan Implikasinya dalam Pembelajaran (AKM and Its Implications in Learning). MoE. https://hasilun.puspendik.kemdikbud.go.id/akm/file_akm2_202101_1.pdf
Murtafiah, W., Sa’dijah, C., Chandra, T. D., & Susiswo. (2020). Exploring the types of problems task by mathematics teacher to develop students’ HOTS. AIP Conference Proceedings, 2215(1), 060018. AIP Publishing LLC.
National Council of Teachers of Mathematics. (2000) Principles and standards for school mathematics. National Council of Teachers of Mathematics.
Nortvedt, G. A., & Buchholtz, N. (2018). Assessment in mathematics education: Responding to issues regarding methodology, policy, and equity. ZDM, 50(4), 555–570. https://doi.org/10.1007/s11858-018-0963-z
Palm, T., Boesen, J., & Lithner, J. (2011). Mathematical reasoning in Swedish upper secondary level assessments. Mathematics Thinking and Learning, 13(3), 221–246. https://doi.org/10.1080/10986065.2011.564994
Papadopoulos, I., Patsiala, N., Baumanns, L., & Rott, B. (2022). Multiple approaches to problem posing: Theoretical considerations regarding its definition, conceptualisation, and implementation. Center for Educational Policy Studies Journal, 12(1), 13–34.
Rahaju, E. B., & Fardah, D. K. (2018). An identification of teachers’ ability on posing hots mathematics problems. Proceedings of the International Conference on Science and Technology (ICST 2018). Atlantis Press. https://doi.org/10.2991/icst-18.2018.169
Rahaju, E. B., Fardah, D. K., Wijayanti, P., & Ismail, I. (2020). Kemampuan guru-guru matematika smp kabupaten Ponorogo dalam mengembangkan soal berpikir tingkat tinggi [The ability of junior high school mathematics teachers in ponorogo district to develop high-level thinking questions]. Jurnal Pendidikan Matematika Raflesia, 5(1), 75–81. https://ejournal.unib.ac.id/index.php/jpmr/article/view/10640
Rosyidi, A. H., Palupi, E. L. W., Kurniasari, I., Masriyah, M., & Siswono, T. Y. E. (2020). Mendaur Ulang Soal Lama Menjadi Soal Baru: Pelatihan untuk Guru Sekolah Menengah Pertama (SMP) Bidang Studi Matematika [Recycling Old Problems Into New Problems: Training for Junior High School (SMP) Teachers in Mathematics]. E-Dimas: Jurnal Pengabdian kepada Masyarakat, 11(4), 531–536.
Schoenfeld, A. H. (2007). Issues and tensions in the assessment of mathematical proficiency. In A. H. Schoenfeld (ed.). Assessing mathematical proficiency (pp. 3–16). Cambridge University Press. https://doi.org/10.1017/CBO9780511755378.003
Setiawati, W., Asmira, O., Ariyana, Y., Bestary, R., & Pudjiastuti, A. (2018). Buku penilaian berorientasi higher order thinking skills [The Oriented Assessment Book to Higher Order Thinking Skills]. Jakarta: Direktorat Jenderal Guru dan Tenaga Kependidikan-Kementerian Pendidikan dan Kebudayaan.
Silver, E. A. (1994). On mathematical problem solving. For the Learning of Mathematics, 14(1), 19–28.
Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27(5), 521–539. https://doi.org/10.2307/749846
Siswono, T. Y. E. (1999). Metode pemberian tugas pengajuan soal (problem posing) dalam pembelajaran matematika pokok bahasan perbandingan di MTs negeri Rungkut Surabaya [The method of assigning the task of posing a problem (problem posing) in mathematics learning is the subject of comparison in MTs Rungkut Surabaya] [Unpublished master’s thesis]. State University of Surabaya, Surabaya, Indonesia.
Smith, G., Wood, L., Coupland, M., Stephenson, B., Crawford, K., & Ball, G. (1996). Constructing mathematical examinations to assess a range of knowledge and skills. International Journal of Mathematical Education in Science and Technology, 27(1), 65–77. https://doi.org/10.1080/0020739960270109
Stickles, P. R. (2011). An analysis of secondary and middle school teachers’ mathmatical problem posing. Investigation in Mathematical Learning, 3(2), 1–34. https://doi.org/10.1080/24727466.2011.11790301
Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing in school mathematics. Technology in mathematics education (pp. 518–525).
Tasman, F. (2020). Designing PISA Like Problems for West Sumatra Mathematics and Science Junior High School Teachers. Pelita Eksakta, 3(1), 75–81. https://doi.org/10.24036/pelitaeksakta/vol3-iss1/106
Unver, S. K., Hidiroglu, C. N., Dede, A. T., & Guzel, E. B. (2018). Factors revealed while posing mathematical modelling problems by mathematics student teachers. European Journal of Educational Research, 7(4), 941–952. https://doi.org/10.12973/eu-jer.7.4.941
West, J. (2018). Stimulating mathematical reasoning with simple open-ended tasks. Australian Primary Mathematics Classroom, 23(1), 37–40. https://files.eric.ed.gov/fulltext/EJ1175508.pdf
Widiartana, I. P. H. (2018). The effect of open-ended approach towards students’ mathematical reasoning. Journal of Physics: Conference Series, 1028, 012134. https://doi.org/10.1088/1742-6596/1028/1/012134
Yao, Y., Hwang, S., & Cai, J. (2021). Preservice Teachers’ mathematical understanding exhibited in problem posing and problem solving. ZDM – Mathematics Education, 53(4), 937–949. https://doi.org/10.1007/s11858-021-01277-8
Yee, F. P. (2000). Open-ended problems for higher-order thinking in mathematics. Journal of Teaching and Learning, 20(2), 49–57.
Zohar, A. (2004). Higher-order thinking in science classroom: Students’ learning and teachers’ professional development. Kluwer Academic Press.
Zulkardi, Z., & Kohar, A. W. (2018). Designing PISA-like mathematics tasks in Indonesia: Experiences and challenges. Journal of Physics: Conference Series, 947, 012015. https://doi.org/10.1088/1742-6596/947/1/012015
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.