Language Support in a Student Laboratory for Chemistry in Secondary School

  • Sarah Kieferle PhD student at Ludwigsburg University of Education, Ludwigsburg, Germany
  • Silvija Markic Ludwig Maximilian University of Munich, Munich, Germany
Keywords: chemistry education, language-sensitive, secondary education, student laboratory


Throughout the world, schools are visited by students with different native languages. Therefore, the linguistic competencies of the students are diverse. Dealing with this diversity is a great challenge for teachers in general, including in science subjects. To face this challenge, all institutions involved in education should adapt their teaching and learning to linguistic diversity to foster student’s language competencies. Non-formal education, such as student laboratories, could enhance formal chemistry education and support students in learning the subject’s contents and acquiring language competencies. To this purpose, language-sensitive and language-supportive learning settings for different chemical topics and contexts are developed to enable all students to participate actively and foster language competencies. The learning settings are implemented and evaluated at the Ludwigsburg University of Education (Germany) using a cyclical approach based on Participatory Action Research. Data from 147 students from seven learning groups of various grade levels and school types were collected before and after they experienced the work in student laboratories. The focus was on students’ situational interests and their views on offered language-sensitive and language-supportive methods, tools, and activities. The data shows that the approach has a positive effect on students’ situational interest. Methods that were especially helpful for the students are filtered. On this basis, implications are drawn for the application to other non-formal education offers.


Download data is not yet available.


Affeldt, F., Markic, S., & Eilks, I. (2019). Students’ use of graded learning aids for inquiry learning. Chemistry in Action, 114, 28–33.

Affeldt, F., Tolppanen, S., Aksela, M., & Eilks, I. (2017). The potential of the non-formal educational sector for supporting chemistry learning and sustainability education for all students – a joint perspective from two cases in Finland and Germany. Chemistry Education Research and Practice, 18(1), 13–25.

Affeldt, F., Weitz, K., Siol, A., Markic, S., & Eilks, I. (2015). A non-formal student laboratory as a place for innovation in education for sustainability for all students. Education Sciences, 5(3), 238–254.

Brandt, A. (2005). Förderung von Motivation und Interesse durch außerschulische Experimentierlabors. [Promoting motivation and interest through out-of-school experimental laboratories]. Cuvillier Verlag.

Chen, A., Darst, P. W., & Pangrazi, R. P. (2001). An examination of situational interest and its sources. British Journal of Educational Psychology, 71(3), 383–400.

Childs, P., Markic, S., & Ryan, M. (2015). The Role of Language in the Teaching and Learning of Chemistry: Chapter 17. In J. García-Martínez & E. Serrano-Torregrosa (Eds.), Chemistry education (pp. 421–445). Wiley-VCH.

Childs, P. E., & Ryan, M. (2016). Chapter 4: Strategies for Teaching the Language of Science. In S. Markic, & S. Abels (Eds.), Science education towards inclusion (pp. 43–66). Nova Publishers.

Coll, R. K., Gilbert, J. K., & Streller, S. (2013). How to benefit from the informal and interdisciplinary dimension of chemistry in teaching. In I. Eilks & A. Hofstein (Eds.), Teaching Chemistry—A Studybook: A Practical Guide and Textbook for Student Teachers, Teacher Trainees and Teachers (pp. 241–268). Sense Publishers.

Eilks, I., & Ralle, B. (2002). Partizipative Fachidaktische Aktionsforschung Ein Modell für eine begründete und praxisnahe curriculare Entwicklungsforschung in der Chemiedidaktik. [Participatory didactic action research A model for well-founded and practice-oriented curricular development research in chemistry didactics]. Chemie Konkret, 1, 13–18.

Engeln, K. (2004). Schülerlabors: Authentische, aktivierende Lernumgebungen als Möglichkeit, Interesse an Naturwissenschaften und Technik zu wecken [Student laboratories: Authentic, activating learning environments as an opportunity to awaken interest in science and technology] (Vol. 36). Logos.

Euler, M., Schüttler, T., & Hausamann, D. (2015). Schülerlabore: Lernen durch Forschen und Entwickeln [School labs: learning through research and development]. In E. Kircher, R. Girwidz, & P. Häußler (Eds.), Physikdidaktik (pp. 759–782). Springer.

Findeisen, S., Horn, S., & Seifried, J. (2019). Lernen durch Videos – Empirische Befunde zur Gestaltung von Erklärvideos. [Learning through videos - Empirical findings on the design of explanatory videos] MedienPädagogik: Zeitschrift Für Theorie Und Praxis Der Medienbildung, 16–36.

Gardenswartz, L., Cherbosque, J., & Rowe, A. (2010). Emotional intelligence and diversity: A model for differences in the workplace. Journal of Psychological Issues in Organizational Culture, 1(1), 74–84.

Gogolin, I. (2013). The “monolingual habitus†as the common feature in teaching in the language of the majority in different countries. Per Linguam, 13(2), Article 2.

Greitemann, L., & Melle, I. (2020). Transferring and optimizing a laptop-based learning environment for the use on iPads. World Journal of Chemical Education, 8(1), 40–46.

Groß, K., & Reiners, C. S. (2012). Experimente alternativ dokumentieren [Document experiments alternatively]. CHEMKON, 19(1), 13–20.

Guderian, P. (2007). Wirksamkeitsanalyse außerschulischer Lernorte der Einfluss mehrmaliger Besuche eines Schülerlabors auf die Entwicklung des Interesses an Physik [Effectiveness analysis of extracurricular learning locations - the influence of repeated visits to a school laboratory on the development of interest in physics] [Humboldt-Universität zu Berlin].

Guderian, P., & Priemer, B. (2008). Interessenförderung durch Schülerlaborbesuche—Eine Zusammenfassung der Forschung in Deutschland [Promoting interest through school lab visits-A summary of research in Germany]. Physik und Didaktik in Schule und Hochschule, 2/7, 27–36.

Huwer, J., Bock, A., & Seibert, J. (2018). The School Book 4.0: The Multitouch Learning Book as a Learning Companion. American Journal of Educational Research, 6(6), 763–772.

Juntunen, M., & Aksela, M. (2013). Life-cycle thinking in inquiry-based sustainability education – effects on students’ attitudes towards chemistry and environmental literacy. Center for Educational Policy Studies Journal, 3(2), 157–180.

Kieferle, S., & Markic, S. (2023). Development and implementation of innovative concepts for language-sensitive student laboratories. Chemistry Education Research and Practice. 24(2), 740–753.

Lee, O. (2005). Science education with English language learners: synthesis and research agenda. Review of Educational Research, 75, 491–530.

Leisen, J. (2010). Handbuch Sprachförderung im Fach: Sprachsensibler Fachunterricht in der Praxis ; Grundlagenwissen, Anregungen und Beispiele für die Unterstützung von sprachschwachen Lernern und Lernern mit Zuwanderungsgeschichte beim Sprechen, Lesen, Schreiben und Üben im Fach [Handbook for language support in the subject: Language-sensitive subject teaching in practice; basic knowledge, suggestions and examples for supporting language-impaired learners and learners with a migration background in speaking, reading, writing and practising in the subject]. Varus-Verl.

Leisen, J. (Ed.). (2015). Methoden-Handbuch deutschsprachiger Fachunterricht [Method handbook for German-language subject teaching] (DFU). Pagina Verlag.

Lynch, S. (2001). “Science for all†is not equal to “one size fits allâ€: linguistic and cultural diversity and science education reform. Journal of Research in Science Teaching, 38(5).

Mamlok-Naaman, R., & Mandler, D. (2020). Education for Sustainable Development in High School through Inquiry-Type Socio-Scientific Issues. In S. O. Obare, C. H. Middlecamp, & K. E. Peterman (Eds.), ACS Symposium Series (Vol. 1344, pp. 69–78). American Chemical Society.

Markic, S., Broggy, J., & Childs, P. (2013). 5. How to deal with linguistic issues in chemistry classes. In A. Hofstein & I. Eilks (Eds.), Teaching Chemistry—A Studybook (pp. 127–152). Sense Publishers.

Miller, J. (2009). Teaching Refugee Learners with Interrupted Education in Science: Vocabulary, literacy and pedagogy. International Journal of Science Education, 31(4), 571–592.

Morris, C., & Chikwa, G. (2014). Screencasts: How effective are they and how do students engage language support in a student laboratory for chemistry in secondary school with them? Active Learning in Higher Education, 15(1), 25–37.

OECD. (2012). Are Students More Engaged When Schools Offer Extracurricular Activities?, PISA in Focus, 18, OECD Publishing.

OECD. (2019). PISA 2018 results (volume ii): Where all students can succeed. OECD Publishing.

Raguse, K., Weber-Peukert, G., Woldt, P., & Lotz, A. (2013). Individuelle Förderung im Chemieunterricht—Der Förderkreis am Beispiel der Unterrichtseinheit „Laborführerschein“ [Individual support in chemistry lessons-The support group using the example of the “Laboratory driving license†teaching unit.]. CHEMKON, 20(4), 183–190.

Reinke, B., Eisenmann, M., Matthiesen, S., Matthiesen, U., & Wagner, I. (2021). Erklärvideos—Im naturwissenschaftlich-technischen Unterricht eine Alternative zu Texten? [Explanatory videos - an alternative to texts in science and technology lessons?] Journal of Technical Education (JOTED), 9(2), 168–187.

Rennie, L. J. (2014). Learning Science Outside of School. In S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 120–144). Taylor & Francis Group.

Rikala, J., Vesisenaho, M., & Mylläri, J. (2013). Actual and potential pedagogical use of tablets in schools. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 9(2), 113–131.

Röllke, K., & Großmann, N. (2022). Predictors of students’ intrinsic motivation in a biotechnological out-of-school student lab. Frontiers in Education, 7.

Scholz, M., Dönges, C., Risch, B., & Roth, J. (2016). Anpassung von Arbeitsmaterialien für selbstständiges Arbeiten von Schülerinnen und Schülern mit kognitiven Beeinträchtigungen in Schülerlaboren – Ein Pilotversuch. [Adaptation of working materials for independent work by pupils with cognitive impairments in school laboratories - a pilot project.] Zeitschrift für Heilpädagogik, 67(7), 318–328.

Stäudel, L., Franke-Braun, G., & Schmidt-Weigand, F. (2007). Komplexität erhalten - auch in heterogenen Lerngruppen: Aufgaben mit gestuften Lernhilfen [Maintain complexity - even in heterogeneous learning groups: Tasks with graded learning aids]. CHEMKON, 14(3), 115–122.

How to Cite
Kieferle, S., & Markic, S. (2024). Language Support in a Student Laboratory for Chemistry in Secondary School. Center for Educational Policy Studies Journal, 14(1), 33-53.