The Development of Research in the Field of Chemistry Education at the University of Novi Sad since the Breakup of the Socialist Federal Republic of Yugoslavia

  • Mirjana D. Segedinac Faculty of Sciences, University of Novi Sad, Serbia
  • Dušica D. Rodić Faculty of Sciences, University of Novi Sad, Serbia
  • Tamara N. Rončević Faculty of Sciences, University of Novi Sad, Serbia
  • Saša Horvat Faculty of Sciences, University of Novi Sad, Serbia
  • Jasna Adamov Faculty of Sciences, University of Novi Sad, Serbia
Keywords: research in chemical education, directions of research, chair of chemistry education

Abstract

The first PhD thesis in the field of Chemistry Education at the Faculty of Sciences, University of Novi Sad, was defended in 1992. This can be regarded as the symbolic dawn of Chemistry Education as a scientific discipline in this region. After the official breakup of the Socialist Federal Republic of Yugoslavia, research that had started in the 1980s, and which was focused on the development of tools for assessing the quality and flexibility of student knowledge, was continued through the 1990s. This research included the application of computers to chemistry teaching, as well as the development of appropriate chemistry learning programmes. In the following period, research focused on the analysis of chemical teaching programmes in the Republic of Serbia, with a special emphasis on the possibility of including eco-chemical content in curricula. Accordingly, potentially efficient models were suggested. The most recent research has been focused on the investigation of the effectiveness of instructional strategies based on a systemic approach and a triplet model of content representation, using combined measures of students’ performance and mental effort. In this regard, tools for the efficient assessment of knowledge (systemic synthesis questions, context-based questions) have been developed along with tools for the efficient assessment of students’ misconceptions (multi-tier tests). Furthermore, in order to make teaching more effective, procedures for assessing the cognitive complexity of chemical problems have recently been developed and subsequently validated both statistically and by applying Knowledge Space Theory.

Downloads

Download data is not yet available.

References

Adamov, J., Segedinac, M., Cvjeticanin, S., & Bakoš, R. (2009). Concept maps as diagnostic tools in assessing the acquisition and retention of knowledge in biochemistry. Odgojne znanosti, 11(1), 53–71. Retrieved from https://hrcak.srce.hr/40001

Adamov, J., & Segedinac, M. (2006a). Application of information-communication technologies (ICT) in science in primary schools in Novi Sad, Serbia. In O. Gajić (Ed.), Evropske dimenzije promena obrazovnog sistema u Srbiji. Na putu ka “Evropi znanja” [European dimensions of changes in the educational system in Serbia. On the road to “Europe of knowledge”] (pp. 275–286). Novi Sad: Filozofski fakultet.

Adamov, J., & Segedinac, M. (2006b). Elektronska učionica u savremenoj nastavnoj praksi [The electronic classroom in contemporary teaching practice]. Pedagogija, 61(4), 531–542.

Adamov, J., & Segedinac, M. (2006c). Razvoj i organizacija elektronskog nastavnog kursa [The development and organisation of an electronic teaching course]. In O. Gajić (Ed.), Evropske dimenzije promena obrazovnog sistema u Srbiji. Od društva znanja ka društvu obrazovanja – evropski okviri kompatibilnosti obrazovnih standarda (pp. 333–356). Novi Sad: Filozofski fakultet.

Adamov, J., & Segedinac, M. (2007). The role of communication technologies in defining and valuing interaction in online learning. In O. Gajić (Ed.), Evropske dimenzije promena obrazovnog sistema u Srbiji. Na putu ka “Evropi znanja” [European dimensions of changes in the educational system in Serbia. On the road to “Europe of Knowledge”] (pp. 305–316). Novi Sad: Filozofski fakultet.

Adamov, J., Marković, D., & Olić, S. (2012). Ispitivanje naučne pismenosti studenata prirodnih nauka [An examination of the scientific literacy of natural sciences students]. In O. Gajić (Ed.), Kvalitet obrazovnog sistema Srbije u evropskoj perspektivi - Zbornik radova, knjiga 2 (pp. 167–182). Novi Sad: Filozofski fakultet.

Adamov, J., Segedinac, M., Ković, M., Olić, S., & Horvat, S. (2012). Laboratory experiment as a motivational factor to learn in Roma elementary school children. The New Educational Review, 28(2), 153–164.

Adamоv, J., & Segedinac, M. (2011). Miniprоjekti u uvоđenju hemijskih nastavnih sadržaja u nastavu prirоde u nižim razredima оsnоvne škоle [Miniprojects in the introduction of chemical teaching content in the teaching subject of natural sciences in lower primary school]. In S. Cvjetićanin (Ed.), Primena učeničkih miniprоjekata u realizaciji nastave integrisanih prirоdnih nauka i matematike u razrednоj nastavi (pp. 9–25). Sоmbоr: Pedagоški fakultet.

Adamоv, J., & Оlić, S. (2014). Predlоg individualizоvanоg prоgrama za nastavu hemije za darоvite učenike [Proposal for an individualised programme for teaching chemistry to gifted students]. Naša škоla, 69(239), 97–111.

Adamоv, J., & Оlić, S. (2015). Оstvarenоst оbrazоvnih standarda za kraj оbaveznоg оbrazоvanja za nastavni predmet hemija [The realisation of educational standards for the end of compulsory education for a chemistry course]. Nastava i vaspitanje, 64(2), 223–237.

Adamоv, J., Radanоv, Lj., Оlić, S., & Segedinac, M. (2012). Analiza stavоva nastavnika i učenika о pоtrebi za uvоđenjem hemije u VI razred [Analysis of teachers’ and students’ attitudes towards the need for introducing chemistry in the 6th grade]. Pedagоgija, 67(3), 376–386.

Adamоv, J., Оlić, S., & Halaši, T. (2014). Multidisciplinarni učenički prоjekti - primer integrisanja sadržaja u оkviru teme “Zdrava hrana” [Multidisciplinary student projects - an example of content integration within the theme “Healthy Food”]. In S. Cvjetićanin (Ed.), Miniprijekti u nastavi integrisanih prirоdnih nauka i matematike 2 (pp. 9–22). Sоmbоr: Pedagоški fakultet.

Adamоv, J., Оlić, S., & Segedinac, M. (2014). Mišljenja nastavnika hemije о identifikоvanju i radu sa darоvitim učenicima [Chemistry teachers’ beliefs regarding identifying and working with gifted students]. Pedagоgija, 69(2), 268–275.

Adamоv, J., Оlić, S., Segedinac, M., Ninkоvić, S., & Kоvačević, M. (2013). Naučna pismenоst оdraslih u Vоjvоdini [Scientific literacy of adults in Vojvodina]. Andragоške studije, (1), 23–36.

Aram, R. J., & Manahan, S. E. (1995). Environmental chemistry and environmental science: A survey of courses offered in U.S. colleges and universities. Journal of Chemical Education, 72(11), 977–978. doi: 10.1021/ed072p977

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3,4), 369–398. doi:10.1207/s15326985ep2603&4_8

Cetin-Dindar, A., & Geban, Ö. (2011). Development of a three-tier test to assess high school students' understanding of acids and bases. Procedia - Social and Behavioral Sciences, 15, 600−604. doi:10.1016/j.sbspro.2011.03.147

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students' ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307. doi:10.1039/B7RP90006F

Cvjeticanin, S., Segedinac, M., & Adamov, J. (2010). Model of permanent eco-chemical education of employees of chemical industry in the function of ecological development. Problemy Ekorozwoju – Problems of Sustainable Development, 5(1), 53–58.

Cvjetičanin, S., Segedinac, M., & Halaši,T. (2010). Značaj primene eksperimenta u razrednоj nastavi [The importance of applying the experiment in classroom teaching]. Nastava i vaspitanje, 59(2), 173–189.

Cvjetićanin, S., Segedinac, M., & Letić, Lj. (2008). Nastavni sadržaji o hemijskoj proizvodnji u osnovnoj školi [Teaching content about chemical production in primary school]. Nastava i vaspitanje, 57(4), 441–454.

Cvjetićanin, S., Segedinac, M., & Letić, Lj. (2009). Chemical industrial production and applied chemistry of metals and nonmetals in educational program of chemistry in elementary school. Hemijska industrija, 63(2), 129–136.

Cvjeticanin, S., Segedinac, M., Adamov, J., & Brankovic, N. (2008b). Primena principa heurističke nastave u formiranju znanja učenika drugog razreda o uticaju toplote na živa bića i materijale [Application of the principles of heuristic teaching in the formation of second grade studentsʼ knowledge about the influence of heat on living beings and materials]. Naša škola, 14(46), 103–115.

Cvjetićanin, S., Segedinac, M., Adamov, J., & Branković, N. (2008a). Eksperimenti o toploti u razrednoj nastavi [Heat experiments in classroom teaching]. Vaspitanje i obrazovanje, 66(1), 91–109.

Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing thinking skills in elementary school: A case study with fifth-grades and sixth-grades. International Journal of Science Education, 31(5), 655–674. doi: 10.1080/09500690701749313

Fahmy, A. F. M., & Lagowski, J. J. (2003). Systemic reform in chemical education: An international perspective. Journal of Chemical Education, 80(9), 1078–1083. doi:10.1021/ed080p1078

Glynn, S. M., & Koballa, T. R. (2006). Motivation to learn in college science. In J. J. Mintzes, & W. H. Leonard (Eds.), Handbook of college science teaching (pp. 25–32). Arlington, TX: National science teachers association press.

Halaši, R., Segedinac, M., Kоnjоvić, Z., & Halaši, T. (1995). Primena kоmpjutera u individualizaciji hemije [The application of computers in the individualisation of chemistry]. In E. Kamenоv (Ed.), Оrganizacija i unapređenje instituciоnalnоg vaspitanja i оbrazоvanja (pp. 79–93). Nоvi Sad: Filоzоfski fakultet.

Halaši, T. (2004). Ulоga savremene оbrazоvne tehnоlоgije i medija u zemljama u tranziciji-refоrma škоlstva u republici Mađarskоj [The role of contemporary educational technology and media in transition countries - Reform of education in the Republic of Hungary]. In E. Kamenоv (Ed.), Strategija razvоja sistema vaspitanja i оbrazоvanja u uslоvima tranzicije (pp. 200–222). Nоvi Sad: Filоzоfski fakultet.

Horvat, S., Rodić, D. D., Segedinac, M. D., & Rončević,T. N. (2017). Evaluation of cognitive complexity of tasks for the topic hydrogen exponent in the solutions of acids and bases. Journal of Subject Didactics, 2(1), 33–45. doi:10.5281/zenodo.1238972

Horvat, S., Rodić, D., Rončević, T., & Segedinac, M. (2019). Validation of method for the assessment of cognitive complexity of chemical technology problem tasks. In V. Lamanauskas (Ed.), Science and technology education: Current challenges and possible solutions. Proceedings of the 3rd International Baltic Symposium on Science and Technology Education (BalticSTE2019) (pp. 67–70). Šiauliai: Scientia Socialis Press.

Horvat, S., Segedinac, M., Milenković, D., & Hrin, T. (2016). Development of procedure for the assessment of cognitive complexity of stoichiometric tasks. Macedonian Journal of Chemistry and Chemical Engineering, 35(2), 275–284. doi: 10.20450/mjcce.2016.893

Hrin, T. N., Fahmy, A. F. M., Segedinac, M. D., & Milenković, D. D. (2016a). Systemic synthesis questions [SSynQs] as tools to help students to build their cognitive structures in a systemic manner. Research in Science Education, 46(4), 525–546. doi:10.1007/s11165-015-9470-1

Hrin, T. N., Milenković, D. D., & Segedinac, M. D. (2016b). The effect of systemic synthesis questions [SSynQs] on students’ performance and meaningful learning in secondary organic chemistry teaching. International Journal of Science and Mathematics Education, 14(5), 805–824. doi: 10.1007/s10763-015-9620-y

Hrin, T. N., Milenković, D. D., & Segedinac, M. D. (2018). Diagnosing the quality of high school students’ and pre-service chemistry teachers’ cognitive structures in organic chemistry by using students’ generated systemic synthesis questions. Chemistry Education Research and Practice, 19(1), 305–318. doi:10.1039/C7RP00162B

Hrin, T. N., Milenković, D. D., Segedinac, M. D., & Horvat, S. (2016c). Enhancement and assessment of students’ systems thinking skills by application of systemic synthesis questions in the organic chemistry course. Journal of Serbian Chemical Society, 81(12), 1455–1471. doi:10.2298/JSC160811097H

Hrin, T. N., Milenković, D. D., Segedinac, M. D., & Horvat, S. (2017). Systems thinking in chemistry classroom: The influence of systemic synthesis questions on its development and assessment. Thinking Skills and Creativity, 23, 175–187. doi:10.1016/j.tsc.2017.01.003

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. doi:10.1111/j.1365-2729.1991.tb00230.x

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–705. doi:10.1021/ed070p701

Johnstone, A. H., & Otis, K. H. (2006). Concept mapping in problem based learning: A cautionary tale. Chemistry Education Research and Practice, 7(2), 84–95. doi: 10.1039/B5RP90017D

Kidanemariam, D. A., Atagana, H. I., & Engida, T. (2014). Do learning styles influence students' understanding of concepts and academic performance in chemistry? Mediterranean Journal of Social Sciences, 5(16), 256–260. doi:10.5901/mjss.2014.v5n16p256

Knaus, K., Murphy, K., Blecking, A., & Holme, T. (2011). A valid and reliable instrument for cognitive complexity rating assignment of chemistry exam items. Journal of Chemical Education, 88(5), 554–560. doi:10.1021/ed900070y

Kolb, A., & Kolb, D. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning & Education, 4(2), 193–212. doi:10.5465/amle.2005.17268566

Krause, M., Pietzner, V., Dori, Y. J., & Eilks, I. (2017). Differences and developments in attitudes and self-efficacy of prospective chemistry teachers concerning the use of ICT in education. EURASIA Journal of Mathematics Science and Technology Education, 13(8), 4405–4417. doi:10.12973/eurasia.2017.00935a

Lam, S., Cheng, R. W., & Choy, H. C. (2010). School support and teacher motivation to implement project-based learning. Learning and Instruction, 20(6), 487–497. doi:10.1016/j.learninstruc.2009.07.003

Maravić, M., Ivković, S., Adamov, J., & Segedinac, M. (2014). Serbian school system as a barrier to the development of environmental awareness. New Educational Review, 36(2), 229–239.

Maravić, M., Ivković, S., Segedinac M., & Adamov J. (2014). Environmental issues in didactic materials in schools in the Republic of Serbia. International Electronic Journal of Environmental Education, 4(2), 61–69. doi:10.18497/iejee-green.38387

Milenković, D., Hrin, T., Segedinac, M., & Horvat, S. (2016a). Development of a three-tier test as a valid diagnostic tool for identification of misconceptions related to carbohydrates. Journal of Chemical Education, 93(9), 1514–1520. doi:10.1021/acs.jchemed.6b00261

Milenković, D., Hrin, T., Segedinac, M., & Horvat, S. (2016b). Identification of misconceptions through multiple choice tasks at municipal chemistry competition test. Journal of Subject Didactics, 1(1), 3–12. doi:10.5281/zenodo.55468

Milenković, D., Segedinac, M., & Hrin, T. (2014). Increasing high school students’ performance and reducing cognitive load through an instructional strategy based on the interaction of multiple levels of knowledge representation. Journal of Chemical Education, 91(9), 1409–1416. doi:10.1021/ed400805p

Milenković, D., Segedinac, M., Hrin, T., & Gajić, G. (2015). Evaluation of context-level effect on students' performance and perceived cognitive load in chemistry problem-solving tasks. Croatian Journal of Education, 17(4), 959–982. doi:10.15516/cje.v17i4.1212

Milenković, D., Segedinac, M., Hrin, T., & Horvat, S. (2016). The impact of instructional strategy based on the triplet model of content representation on elimination of students' misconceptions regarding inorganic reactions. Journal of the Serbian Chemical Society, 81(6), 717–728. doi:10.2298/JSC150812021M

Novak, J. D. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. New York, NY: Routledge.

Novak J. D., & Gowin D. B. (1984). Learning how to learn. New York, NY: Cambridge University Press.

Olić, S., & Adamov, J. (2016). Relationship between learning styles of grammar students and school achievement. Teme, 40(4), 1223–1240.

Olić, S., & Adamov, J. (2017). Nastavne strategije i učeničko postignuće u hemiji [Teaching strategies and student achievement in chemistry]. Nastava i vaspitanje, 66(1), 55–66.

Olić, S., & Adamov, J. (2018a). The relationship between learning styles and students’ chemistry achievement. Macedonian Journal of Chemistry and Chemical Engineering, 37(1), 79–88. doi:10.20450/mjcce.2018.1400

Olić, S., & Adamov, J. (2018b). Pristupi učenju kod studenata hemije [Learning approaches in chemistry students]. Pedagogija, 73(2), 318–335.

Olić, S., Adamov, J., & Babić-Kekez, S. (2017). Motivacija studenata hemije za izučavanje hemijskih nastavnih sadržaja [The motivation of chemistry students for learning chemical teaching content]. Pedagoška stvarnost, 63(1), 41–51.

Olić, S., Adamоv, J., & Babić-Kekez, S. (2014). Mоtivacija kaо prediktоr učeničkоg pоstignuća u hemiji [Motivation as a predictor of student achievement in chemistry]. Istraživanja u pedagоgiji, 4(2), 24–36.

Olić, S., Ninković, S., & Adamov, J. (2016). Adaptation and empirical evaluation of the questionnaire on students’ motivation towards science learning. Psihologija, 49(1), 51–66. doi:10.2298/PSI1601051O

Passow, A. H. (1981). The nature of giftedness and talent. Gifted Child Quarterly, 25(1), 5–10.

Pendley, B. D., Bretz, R. L., & Novak, J. D. (1994). Concept maps as a tool to assess learning in chemistry. Journal of Chemical Education, 71(1), 9–17. doi:10.1021/ed071p9

Raker, J. R., Trate, J. M., Holme, T. A., & Murphy, K. (2013). Adaptation of an instrument for measuring the cognitive complexity of organic chemistry exam items. Journal of Chemical Education, 90(10), 1290–1295. doi:10.1021/ed400373c

Regis, A., Albertazzi, P., & Roletto E. (1996). Concept maps in chemistry education. Journal of Chemical Education, 73(11), 1084–1088. doi:10.1021/ed073p1084

Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: Adaptation and validation of science motivation questionnaire II with Greek secondary school students. Chemistry Education Research and Practice, 16(2), 237–250. doi:10.1039/C4RP00196F

Segedinac, M. T., Horvat, S., Rodić, D. D., Rončević, T. N., & Savić, G. (2018). Using knowledge space theory to compare expected and real knowledge spaces in learning stoichiometry. Chemistry Education Research and Practice, 19(3), 670–680. doi:10.1039/C8RP00052B

Segedinac, M., & Halaši, R. (1998). Blumova taksonomija kao osnova za konkretizaciju i operacionalizaciju ciljeva i zadataka nastave hemije u nastavnoj oblasti struktura materije [Bloom’s taxonomy as a basis for the concretisation and operationalisation of chemistry teaching goals and tasks in the teaching theme the structure of matter]. Pedagogija, 31(2), 88–99.

Segedinac, M., Adamov, J., & Halaši, T. (2007). Korelacija nastavnih sadržaja hemije i užestručnih predmeta prehrambene struke u srednjem obrazovanju [The correlation of chemistry teaching content and extracurricular subjects of food industry in secondary education]. Pedagoška stvarnost, 53(1–2), 42–50.

Segedinac, M., Konjović, Z., & Dukić, Lj. (1994). Identifikacija faktora kreativnosti u nastavi hemije [The identification of creativity factors in chemistry teaching]. Nastava i vaspitanje, 43(1-2), 31–37.

Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). Chemical literacy: What it means to scientists and school teachers?. Journal of Chemical Education, 83(10), 1557–1561. doi:10.1021/ed083p1557

Tuan, H. L., Chin, C. C., & Shyang, S. H. (2005). The development of a questionnaire to measure student's motivation towards science learning. International Journal of Science Education, 27(6), 639–654. doi:10.1080/0950069042000323737

Published
2020-03-20